Coordinate System Hung-yi Lee

Coordinate System

- Each coordinate system is a "viewpoint" for vector representation.
- The same vector is represented differently in different coordinate systems.
- Different vectors can have the same representation in different coordinate systems.
- A vector set B can be considered as a coordinate system for R^{n} if:
-1. The vector set B spans the R^{n}
- 2. The vector set B is independent

Coordinate System

－Let vector set $\mathrm{B}=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ be a basis for a subspace R^{n}

B is a coordinate system

－For any v in R^{n} ，there are unique scalars $c_{1}, c_{2}, \cdots, c_{n}$ such that $v=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}$
B－coordinate vector of v ：
$\left.\begin{array}{c} \\ (\text { 用 } \mathrm{B} \text { 的觀點來看 } v \text { ）}\end{array}\right]$
$\in \mathcal{R}^{n}$

E

$\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ is a coordinate system

New Coordinate System B

$$
b_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad b_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
8 \\
4
\end{array}\right]=6 b_{1}+(-2) b_{2}
$$

民濕寝則腰疾偏死，鰌然乎哉？木處則惴慄恂懼，猨猴然乎哉？三者孰知正處？民食芻豢，麋鹿食薦，蝍蛆甘帶，鴟鴉嗜鼠，四者孰知正味？猨猵狙以為雌，麋與鹿交，鰌與魚游。毛嬙，西施，人之所美也；魚見之深入，鳥見之高飛，麋鹿見之決驟，四者孰知天下之正色哉？《莊子．齊物論》

Vector

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad b_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad b_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Vector

Vector

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
b_{1}=\left[\begin{array}{c}
2 \\
0.5
\end{array}\right] \quad b_{2}=\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]
$$

New Coordinate System B

E
$\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}$ is a coordinate system

$$
\left[\begin{array}{l}
8 \\
4
\end{array}\right]=8 e_{1}+4 e_{2}
$$

$b_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad b_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\left[\begin{array}{l}
8 \\
4
\end{array}\right]=6 b_{1}+(-2) b_{2}
$$

$$
\mathrm{E}=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\} \text { (standard vectors) } \quad v=[v]_{\mathrm{E}}
$$

E is Cartesian coordinate system（直角坐標系）

Coordinate System

- A vector set B can be considered as a coordinate system for R^{n} if:
-1. The vector set B spans the R^{n}

Every vector should have representation

- 2. The vector set B is independent

Unique representation

B is a basis of R^{n}

Why Basis?

- Let vector set $\mathrm{B}=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ be independent.
- Any vector vin Span B can be uniquely represented as a linear combination of the vectors in B.
- That is, there are unique scalars $a_{1}, a_{2}, \cdots, a_{k}$ such that $v=$ $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{k}$
- Proof:

Unique? $\quad v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{k} u_{k}$

$$
v=b_{1} u_{1}+b_{2} u_{2}+\cdots+b_{k} u_{k}
$$

$\left(a_{1}-b_{1}\right) u_{1}+\left(a_{2}-b_{2}\right) u_{2}+\cdots+\left(a_{k}-b_{k}\right) u_{k}=0$
B is independent $\square a_{1}-b_{1}=a_{2}-b_{2}=\cdots=a_{k}-b_{k}=0$

